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Abstract

We study the dynamics of a connected banking sector where the financial links
between banks are explicitly modelled, including the liquidation procedures in the case
of the failure of an individual bank. This model of banking network allows us to
simulate the bankruptcy contagion process and quantify the extent of a banking crisis.
It also allows us to assess various forms of prudential policies.
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1 Introduction

Systemic risk is a poignant real world issue — and its complexity calls for numerical
simulations. The recent advances in network theory and its applications to Economics—[?],
[?], [?], [?] and many others — make it a potentially useful tool to study this phenomonon.
Such network-based models are by definition complex and as a consequence we can rarely
hope to resolve them analytically. They however enable us to understand what the macro
implication of entangled micro-phenomenon are. As a consequence despite their complexity,
they are of great interest to the field of economics.

Approaching systemic risk in such manner is particularly tempting since the collapse
of Lehman Brothers has shown in 2008 that the global financial system was fragile and
prone to contagion. The intertwined balance sheets and complex derivatives commitments
between banks are among the possible culprits, for they seem to have lead the global
financial system to act as an amplifier of economics issues. One default turned out to
spread like a disease shaking the whole financial system to its core and bringing about a
fierce economic crisis. How did this one default turned into a systemic event? Systemic risk
can be seen as network issue since as stated above, banks are interdependant on one another
in a lots of ways. However, in order to simplify, we may model only one type of link between
them—loans and debts. This generates a bank network which nodes are the banks while
weighted edges represent the loans/debts between them. This was done in [?] where the
authors conclude that some networks are more prone to network-wide contagion—systemic
events—than other.

Our aim is to create a more advanced model of financial networks that can be used for
any structure of network. Each node’s state is given by a simplified balance sheet from
which an equity can be computed. This is the key quantity that determines whether a node
is in default. Since we want to only consider solvency defaults and not liquidity default,
we design a model such that the latter cannot happen. We then simulate and study the
propagation of defaults brought about by random returns from risky assets included in the
balance sheets. However we do so in a dynamic fashion. In that sense, we go one step
further in comparison to the existing literature where dynamics is often limited either to
a fixed small number of periods [?] or to a "killing cascade" [?], [?]—after an initial shock
banks may default which may in turn bring about new defaults and so on until no more
banks are defaulting. Having a real time dynamics will give the possibility to study several
sequential control policies such as dynamic resource allocations [?]. The final long term
objective being to find a policy that is likely to contain potential systemic events—events
involving a significant part of the system—under constraints of budget.

2 Economic description of the model

We focus our analysis on banks and the only type of credit we consider is inter-bank
loans. Banks do not take stakes in one another. The outside economy is simply modelled
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as a set of risky assets which yields random returns, they could represent for instance loans
to companies, to individuals, investment in public projects... as well as financial products.

2.1 Banks

2.1.1 Balance sheet representation

Let n be the number of banks in the network. At each time t, bank i is represented as
a simplified balance sheet :

Assets (Ait) Liabilities (Lit)
Reserve (Rit) Equity (Eit)

Inter-bank loans (Lit) Inter-bank debts (Di
t)

Portfolio (P it )

• On the assets side :

– Reserve Rit is the amount of reserves, it is perfectly liquid (equivalent to cash).
– Lit corresponds to the cumulative face-value of the loans bank i granted other

banks. Also, let us denote by Lijt the face-value of the loan bank i granted bank
j. Thus Lit =

∑n
j=1 L

ij
t .

– Portfolio P jt is the amount of money invested in the economy.

• On the liabilities side :

– Equity Eit is equal to the assets minus the liabilities.
– Di

t corresponds to the cumulative face-value of the loans other banks granted
bank i. Thus Di

t =
∑n

k=1 L
ki
t .

Let us denote by :

• Lt ∈Mn,n(R+) the matrix of inter-bank loans which entry (i, j) is Lijt . At this point,
we should highlight that:

– In order to simplify the graph as much as possible, loans and debts will be
netted, which means that Lijt > 0⇒ Ljit = 0. Given a matrix Lt, we can obtain
its netted version L′t using component-wise maximum by doing the following
operation :

L′t = max
(
0n,n, Lt − LTt

)
.

Where 0n,n ∈Mn,n (R) is the matrix full of zeros.
– The matrix Lt contains all the information on the graph at time t, thus no need

to have a debt matrix since it is simply equal to LTt , the transposed version of
Lt.
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• Et ∈Mn,1 (R) the vector of equities which i-th element is Eit .

• Rt ∈Mn,1 (R) the vector of reserves which i-th element is Rit.

2.1.2 Interest rates

We introduce the inter-bank interest rate rit which determines the cost of borrowing for
bank i at time t. Its existence is justified by the extra risk taken when lending money. We
make several assumptions for now which we may relax in a more complex version:

• Interest rates are deterministic.

• rjt does not depend on time, thus we will omit the time-index rit = ri.

• ∀i ∈ J1, nK, ri = r, thus every bank can borrow money for the same interest rate r
to other banks.

• Moreover, 1 > r > 0.

2.2 Portfolios and risky assets

2.2.1 Risky assets

There are m risky assets in the economy. We take a wide definition of risky assets which
entails productive investments such as loans to companies or individuals, investments in
public projects... Thus risky assets are not necessarily stocks or financial products although
they can be. The only fundamental conditions to match the definition are:

• to be outside of the network of banks.

• to be risky to some extent.

Each risky asset has a time-dependent valuation. For a given l ∈ J1,mK, let us denote by
X l
t this valuation at date t with time being discrete.
For now, those risky assets do not yield dividend. As a consequence gains (resp. losses)

only come from increases (resp. drops) in the valuations.
We model the movements in valuations using Gaussian increases:

X l
t = X l

t−1 + ωlt−1.

With:
ωlt−1 ∼ N

(
µl, σ

2
l

)
.

We denote by ωt−1 the vector of increases in t. Since its components are Gaussian and
independent, this is a Gaussian vector with:

• Mean vector µ ∈Mm,1 (R)

5



• Covariance matrix Σ = Diag
[(
σ2l
)
1≤l≤m

]
∈Mm,m (R+).

In mathematical writing:
ωt−1 ∼ N (µ,Σ) .

To finish with, we make the assumption that increases are independent across time:

∀t 6= t′, wt−1 |= wt−1′ .

2.2.2 Banks’ portfolios and valuation

Banks invest in those risky assets. Let us denote by Qit ∈ M1,m (R+) the vector which
entry Qilt is number of unit of product l that bank i holds in its portfolio at time t. The
matrix Qt ∈Mn,m (R+) is the matrix which i-th row is Qit.

As a consequence, the value of i’s portfolio is simply given by the dot product: P it =
QitXt. We can aggregate this formula for all banks in matrix form:

Pt = QtXt.

With Pt ∈Mn,1 (R+) being the portfolio vector.

3 General dynamics of the system

3.1 Sequence of events

In this subsection, we establish the chronology of events. Since several operations take
place within a given time-lapse t, the ordering of events need to be precised. We will detail
the equations later—in what follows, we make reference at each stage description to the
appropriate section/subsection.

• Stage 1: updates (detailed in 3.3). At the beginning of this stage, the state of a
bank is given by the vector

(
Eit−1, D

i
t−1, R

i
t−1, P

i
t−1, L

i
t−1
)
. The following operations

are then carried out:

– If banks have defaulted in the previous period, the defaults are now effective and
the creditors of the defaulted banks suffer the corresponding losses.

– The reserves are updated: banks pay interest rates on inter-bank loans and if
banks have defaulted in the previous period, proceedings from liquidation are
added to the reserves.

– The valuation of the risky assets are updated and the value of portfolios are
changed accordingly.

At the end of this stage, the state of a bank is given by a vector of five variables :(
Êit , D̂

i
t, R̂

i
t, P̂

i
t , L̂

i
t

)
.
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• Stage 2: checking for default. Banks for which Eit ≤ Ēi declare default and are
liquidated (see section 4 for the detailed processes of liquidation). Although their
defaulting is not public information yet, it will become so at the beginning of the
next period. The vector Ē which components are the Ēi is a minimal threshold value
for the equity of each bank. It enables us to implicitly include deposits from investors
or individuals from outside the system in the balance sheets of the banks.

• Stage 2: defaulting stage (detailed in ...).

In this stage the fulfillment of the default rule (to be set and discussed later) is checked
for all banks in the network.

• Stage 3: balance sheet management (detailed in 3.4). Banks readjust between
portfolio and reserves according to (detailed in 3.2):

– The reserve rule

– The financial choice for the portfolio.

At the end of the stage, the state of a bank is given by the 5 state variables
(
Eit , D

i
t, R

i
t, P

i
t , L

i
t

)
.

3.2 Viability conditions

We need to introduce additional hypothesis, initial conditions and constraints in order
to maintain our model’s coherence.

• We assume that banks cannot have a negative expected variation of equity. Even
though they are unidentified and not included in our model, we can assume that
there are shareholders who own the banks. They indeed want their shares to gain
value which justify our hypothesis on the variation of equity. This is the subject of
section 3.2.1.

• If some banks have borrowed more than they have lent so as to invest in their portfolio
section, their reserves will deplete mechanically after a given number of periods. As a
consequence, we need to define transfer rules between portfolio and reserve. We thus
introduce the reserve rule and the financial choice in 3.2.2.

• We make the assumption that banks can sell assets from their portfolio freely as a
regular operation of management without paying any fees or having any price impact.
This seems to be a reasonable hypothesis since only small amounts of risky assets are
bought and sold in a usual financial market context in order to obtain the chosen
portfolio. To finish with it is worth mentioning that we do not impose integer-valued
quantities.
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3.2.1 Bank should have a positive expected net-worth delta

Expected returns vs interest rates. Since risky assets’ returns are uncertain, invest-
ment opportunities must offer a risk premium—although loans to other banks are risky too
they are obviously less so. This implies a first initial condition on the means µ of the vector
of increases in relation to the initial prices:

∀l ∈ J1,mK,
µl

X l
0

≥ r.

Balance sheets coherence. As a consequence, it can be interesting for a bank to borrow
money from other banks in order to invest. Although it may do so only in such a way that
it gains money on average. Denoting by Ft the information available up to time t, this
amounts to:

E
[
Eit |Ft−1

]
≥ Eit−1.

Let us remark first that since Eit−1 ≥ Ēi, this implies that a bank that has not defaulted
in t− 1 cannot be expected to default in t.

Applying expectation conditionally on Ft to (6) we get:

E
[
Eit |Ft−1

]
= Eit−1 + rLit−1 − rDi

t−1 +Qit−1E
[
ωlt|Ft−1

]
.

Which is equivalent to:

E
[
Eit |Ft−1

]
− Eit−1 = rLit−1 − rDi

t−1 +Qit−1µ.

As a consequence,

E
[
Eit |Ft−1

]
≥ Eit−1 ⇔ rLit−1 − rDi

t−1 +Qit−1µ ≥ 0.

Rearranging the terms, the condition is:

Qit−1µ ≥ r
(
Di
t−1 − Lit−1

)
.

Actually this condition may prove too difficult to enforce at each future period. We will
thus consider only its initial version:

Qi0µ ≥ r
(
Di

0 − Li0
)
. (1)
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3.2.2 Regulation rules and management conditions

Reserve rule We want to ensure that banks can pay their interest rates the next day.
We thus introduce the following regulatory rule imposed by some prudential authority. We
take the positive part of the second term since lending more than one has borrowed does
not grant one the right to have negative reserves.

Rit + rmax
(
0,
(
Lit −Di

t

))
≥ 0. (2)

Proposition A bank that has not defaulted in t necessarily has enough liquidity in t to
comply with the reserve rule.

To prove this, let us distinguish between two cases:

• D̂i
t ≤ L̂it. In that case, a bank net interest rate cash flows are positive and as a

consequence it automatically complies with the reserve rule since its reserves are
positive (we do not authorize negative reserves). In other words, since Rit ≥ 0

L̂it − D̂i
t ≥ 0⇒ r

(
L̂it − D̂i

t

)
≥ 0⇒ R̂it + r

(
L̂it − D̂i

t

)
) ≥ 0.

• D̂i
t > L̂it. The bank has not defaulted in t, thus:

Êit > Ēi ⇒ Êit > 0⇔ R̂it + P̂ it + L̂it − D̂i
t > 0.

We have:
D̂i
t − L̂it > R̂it + P̂ it .

Since r < 1:
D̂i
t − L̂it > r

(
D̂i
t − Lit

)
.

As a consequence:
R̂it + P̂ it > r

(
D̂i
t − L̂it

)
.

We can thus conclude that a bank that has not defaulted in t always has enough liquidity
to be able to reallocate its liquid assets in t so as to comply with the reserve rule. It can
do so by selling partially its portfolio in order to increase its reserves.

This rule enables us to avoid liquidity defaults, and being solvent is a sufficient condition
to be able to comply with it. Since we want to account only for solvency defaults, our model
is coherent. Indeed, default can be defined as either having not enough cash to honor one’s
financial obligation (liquidity default) or not having enough equity (solvency default)—or
both. We have shown here that since the only illiquid assets are inter-bank loans, if equity
is positive in t then by construction liquidity default cannot happen in t.
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Portfolio management condition Since the value of the assets in the portfolio will vary,
so will the size of the portfolio in relation to the rest of the balance sheet quantities. As a
basic rule of management, we may state that each bank wants to maximize its investment
in the portfolio under the constraint that it amounts to a given fraction of the total of its
assets At (and that it is in accordance with the reserve rule). Let us define then by αi the
target investment percentage of bank i which we can interpret as a behavioral parameter.
We assume for now that the share of wealth invested in each asset remains constant. As a
consequence, we can formulate the problem in term of P it only :

maxP it

s.t.
P it ≤ αiAit

Rit + max
(
0, r

(
Lit −Di

t

))
≥ 0

P it +Rit = P̂ it + R̂it

3.3 Stage 1: updates

3.3.1 Reserves

The evolution of reserves is given by:

R̂it = Rit−1 + rL̂it − rD̂i
t. (3)

3.3.2 Portfolio

By definition:

P̂ it = Qit−1Xt.

Using the dynamics of the risky assets this is equivalent to:

P̂ it = Qit−1 (Xt−1 + ωt−1) .

Supposing that bank i has not defaulted in t− 1:

P̂ it = P it−1 +Qit−1ωt. (4)
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3.3.3 Equity

Mathematically, the accounting definition of equity is:

Êit = R̂it + P̂ it + L̂it − D̂i
t. (5)

Putting all above dynamic equation together yields:

Êit = Rit−1 + rL̂it − rD̂i
t + L̂it − D̂i

t + P it−1 +Qit−1ωt.

If no bank has defaulted in t− 1, L̂it = Lit−1 and D̂i
t = Di

t−1 which implies:

Eit = Rit−1 + P it−1 + Lit−1 −Di
t−1 + r

(
Lit−1 −Di

t−1
)

+Qit−1ωt.

We can thus deduce the following recursion formula for equity if no bank has defaulted
in the previous period:

⇔ Eit = Eit−1 + r
(
L̂it−1 − D̂i

t−1

)
+Qit−1ωt. (6)

3.4 Stage 3 : balance sheet management

3.4.1 Reserve rule and portfolio rule in practice

Let us distinguish two cases:

• R̂it < max
(

0, r
(
D̂i
t − L̂it

))
(reserve rule not matched).

• R̂it ≥ max
(

0, r
(
D̂i
t − L̂it

))
(reserve rule matched).

Let us also define the portfolio valuation objective P it that the bank wishes to reach.

Reserve rule matched No need to rebalance to comply with the reserve rule. We can
increase the portfolio valuation objective although when doing so, we must keep in mind
the reserve rule. We distinguish again different cases:

• P̂ it > αiAit. In that case, a portion P̂ it −αiAit of the portfolio must be sold. No other
actions are required.

P it = αiAit.

• P̂ it ≤ αiAit. In that case the bank wants to expand its portfolio so as to saturate the
constraint if possible given the reserve rule.

P it = min
(
αiAit, P̂ it + R̂it −max

(
0, r

(
D̂i
t − L̂it

)))
.
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Reserve rule not matched The bank have to sell a portion of its portfolio to comply
with the reserve rule. However, it may sell more of it if it is still too large according to the
financial choice. Let us distinguish two cases:

• P̂ it +R̂it−max
(

0, r
(
D̂i
t − L̂it

))
≤ αiAit. In that case, the bank sells only the amount

necessary to comply with the reserve rule — since R̂it − max
(

0, r
(
D̂i
t − L̂it

))
< 0

this is indeed selling . As a consequence:

P it = P̂ it + R̂it −max
(

0, r
(
D̂i
t − L̂it

))
.

• P̂ it +R̂it−max
(

0, r
(
D̂i
t − L̂it

))
> αiAit. In that case, the bank sells enough portfolio

assets to comply with the financial choice. Which is enough to comply also with
the reserve rule since we have: P̂ it − αiAit > −R̂it + max

(
0, r

(
D̂i
t − L̂it

))
. As a

consequence:
P it = αiAit.

Synthesis We can actually unify all four cases in the following formula:

P it = min
(
P̂ it + R̂it −max

(
0, r

(
D̂i
t − L̂it

))
, αiAit

)
. (7)

The new amount of reserves is also deduced easily from P it :

Rit = R̂it + P̂ it − P it . (8)

3.4.2 Find quantities to match a given portfolio valuation objective

Now that P it is known, we show here how to adjust the quantities invested in each asset
so as to match this portfolio valuation objective. Given prices Xt and quantities Qit−1, we
seek to find the vector of quantities Qit for which QitXt−1 = P it while keeping the relative
quantities constant.

Given a portfolio value objective P it , a portfolio current valuation P̂ it , prices Xt−1 and
quantities Qit−1, we seek to find the vector of quantities Qit for which QitXt−1 = P it while
keeping the relative quantities constant i.e:

∀l ∈ J1,mK,
Qilt∑m
c=1Q

ic
t

=
Qilt−1∑m
c=1Q

ic
t−1

Let us define:
¯Qit−1 =

m∑
c=1

Qict−1
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δil =
Qilt−1

¯Qit−1

It is easy to verify that given the constraints, we only have one degree of freedom to
modify the quantities and thus finding Qit boils down to finding ηi such that:

m∑
l=1

(
Qilt−1 + δilηi

)
X l
t = P it

The resulting solution quantities being:

∀l, Qilt =
(
Qilt−1 + δilηi

)
Developing and solving in ηi yields:

ηi = ¯Qit−1
P it − P̂ it
P̂ it

Thus:

∀l, Qilt = Qilt−1

(
1 +

P it − P̂ it
P̂ it

)

∀l, Qilt = Qilt−1

(
1 +

P it − P̂ it
P̂ it

)
. (9)

Using (7) into (9), we deduce the new quantities:

∀l, Qilt = Qilt−1

1 +
min

(
P̂ it + R̂it − r

(
D̂i
t − L̂it

)
, αiAit

)
− P̂ it

P̂ it

 . (10)

4 Taking into account bankruptcy

4.1 Hypothesis and definitions

Set of defaulting banks. A time t, if the capital of a non-empty set of banks to drop
below a given threshold, those banks declare bankruptcy at time t. Let Dt be the set of
banks that declare bankruptcy at time t. Thus :

j ∈ Dt ⇔ {Êjt ≤ Ēj} ∩ {E
j
t−1 > Ēj}. (11)
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We also define the set of banks that have defaulted up to time t:

D0:t =
t⋃

s=0

Ds.

Symmetrically, we denote by Dt the complementary in the set of banks of Dt. We use
the same notation for the complementary of D0:t which we shall then denote by D0:t.

Leverage regulatory threshold. In order to analyze the effect of a maximum leverage
ratio enforced by the regulator, we can decide moreover that any bank which does not satisfy
the leverage regulatory threshold is liquidated as a prudential measure. Mathematically let
us introduce the leverage regulatory threshold λ∗, and at all periods banks must satisfy:

Lit
Eit
≤ λ∗.

This implies a modified definition of the set of defaulting banks:

j ∈ Dt ⇔
{
{Ejt ≤ Ēj} ∩

(
Ljt
Ejt

> λ∗

)}
∪
{
{Ejt−1 > Ēj} ∩

(
Ljt−1
Ejt−1

≤ λ∗
)}

. (12)

Proceedings from liquidation and claim coefficient. Let us firstly introduce two
quantities that we will use across this section.

• We define the proceedings from liquidation πjt . This is the cash liquidation value of
j’s balance sheet after it declares default and is liquidated at time t

• We define the claim coefficient of creditor i on bank j by:

Ψij
t =

L̂ijt∑n
s=1 L̂

sj
t

.

In this section, we will present two possible procedures to determine πjt : internal settlement
in section 4.2 and intervention of a third party in section 4.3. Firstly we need to introduce
some considerations of the price impact of fire sales.

Impact of fire sale on risky assets’ valuation. When a portfolio is sold in a fire
sale context, an important volume is sold and the selling is done in the urgency. It is as
a consequence realistic to add a fire sale impact to the valuation of the risky assets sold.
There are two dimensions to this impact:

14



• When banks are liquidated, there is a panic on the markets and since they liquidate
their asset, the price of the risky assets at a given period should be locally dependant
on the volume of assets liquidated. We model this short term price impact by spec-
ifying the fire sale coefficient ξ as a function of the fraction of all risky assets in the
system that are being liquidated. Denoting by 0 < vt < 1 this fraction, we define ξt
as:

ξt = exp (−θvt)
Considering θ to be a market sensibility parameter, the bigger it is, the faster the
market will react to selling of high volumes. One simple way to specify θ is to express
it as the negative of the logarithm of a given ξmin which is the minimal value that we
wish ξt to attain — in the case vt = 1. For instance if we want the fire sale coefficient
to be bounded by 0.2 we can take θ = − ln(0.2), which is in fact equivalent to taking:

ξt = 0.2vt

• We assume that the liquidation of an important volume of a given asset does not have
a long term price impact: the price impact is memory-less.1

As the reader may wonder, we compute the fraction vt as the fraction on the total initial
quantities, not the remaining total quantities at time t. The underlying interpretation is
that the risky assets are sold to a "rest of the world" — markets that are outside of the
network. As a consequence the normalization by the total initial quantities is in a way
arbitrary only to ensure that we have a fraction that stays within [0, 1]. However the
absence of adaptive normalization — normalization by the total quantities at time t —
reflects the fact that since the risky assets are traded all over the world, and not only from
our network to the rest of the world, the quantity of risky assets remaining in the network
should not have a direct effect on the price impact of fire-sale from the network to the
world.

4.2 Internal settlement

In the internal settlement case, the loans of a defaulting banks j are redistributed to its
creditor proportionally to their claim on j.

1. In t− 1 at stage 2:

• if Êjt−1 ≤ Ēj , j declares default. Which triggers the following liquidation steps.

• πjt−1 is computed. Portfolio is sold according to its valuation with a discount
coefficient 0 < ξt−1 < 1 applied due to fire-sale. Reserves are included.

πjt−1 = ξt−1P̂
j
t−1 + R̂jt−1.

1Introducing a long term impact on the prices (a lagged effect) would be an interesting add-in to our
model.
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2. In t at stage 1, the default becomes public information which brings about the fol-
lowing modifications:

• j’s loans are added to the loans of the creditors of j proportionally to Ψij
t−1:

∀i /∈ D0:t−1, ∀k /∈ D0:t−1, L̂ikt = Likt−1 + Ψij
t−1L

jk
t−1.

• The loans matrix is modified to account for j’s default:

∀i, L̂ijt = 0

∀k, L̂jkt = 0.

The aggregated loans and debts are then computed according to their definition:

∀i, L̂it =
n∑
s=1

L̂ist

∀i, D̂i
t =

n∑
s=1

L̂sit .

• j’s balance sheet quantities are set to zero :(
Ejt , D

j
t , R

j
t , P

j
t , L

j
t , Q

j
t

)
= (0, 0, 0, 0, 0, 0Rm) .

• Proceedings of liquidation are distributed to the creditors of j proportionally to
their claim on j. This implies a modified version of the equation (3):

R̂it = Rit−1 + r
(
L̂it − D̂i

t

)
+ Ψij

t−1π
j
t−1.

4.3 Introduction of a third party

Introduction of the liquidator. Another option is to introduce a special actor in the
system which we call the liquidator. It only intervenes when a bank is liquidated and
cannot go bankrupt (it has infinite reserves). Although for reason that will become clear,
the liquidator must be integrated to the graph. We shall as a consequence give it a special
index: 0.

The balance sheet of the liquidator has a special format:

Assets (A0
t ) Liabilities (L0t )

Reserves (R0
t = «∞») Equity (E0

t )
Inter-bank loans (L0

t ) (Debts (D0
t = 0))

(Portfolio (P 0
t = 0))
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Liquidation with the liquidator. When a bank j goes bankrupt at time t − 1, the
liquidator buys the totality of the bankrupt bank’s loans to other banks with a discount
0 < ζ < 1. Although, we have to be careful since the bankrupt bank in question may have
lent to other defaulting bank. The liquidator does not buy those value-less loans. In all
other matters, the procedure is similar to the previous one:

1. In t− 1 at stage 2:

• if Êjt−1 ≤ Ēj , j declares default. Which triggers the following liquidation steps.

• πjt−1 is computed. Portfolio is sold according to its valuation with a discount
coefficient 0 < ξt−1 < 1 applied due to fire-sale. Reserves are included. Finally
cash from the loans sold to the liquidator are incorporated:

πjt−1 = ξt−1P̂
j
t−1 + R̂jt−1 + ζ

∑
k∈Dt−1

L̂jkt−1.

2. In t at stage 1, the default becomes public information which brings about the fol-
lowing modifications:

• The liquidator’s balance sheets is updated to incorporate the loans buy-outs
(bank j’s debtor now owns money to the liquidator):

R̂0
t = R̂0

t−1 − ζ
∑

k∈Dt−1

Ljkt−1

L̂0
t = L0

t−1 +
∑

k∈Dt−1

Ljkt−1

Ê0
t = E0

t−1 + (1− ζ)
∑

k∈Dt−1

Ljkt−1

∀k ∈ Dt−1, L̂0k
t = L0k

t−1 + Ljkt−1.

• The loans matrix is modified:

∀i, L̂ijt = 0

∀k, L̂jkt = 0.

The aggregated loans and debts are then computed according to their definition:

∀i, L̂it =

n∑
s=1

L̂ist

∀i, D̂i
t =

n∑
s=1

L̂sit .

17



• j’s balance sheet quantities are set to zero:(
Ejt , D

j
t , R

j
t , P

j
t , L

j
t , Q

j
t

)
= (0, 0, 0, 0, 0, 0Rm) .

• Proceedings of liquidation are distributed to the creditors of j proportionally to
their claim on j. This implies a modified version of the equation (3):

R̂it = Rit−1 + r
(
L̂it − D̂i

t

)
+ Ψij

t−1π
j
t−1.

4.4 Analysis of losses

Now that we have introduced the two ways of liquidating, we can decompose the formula
for the update of equity in order to better understand the channels of losses. Summing all
the proceedings of liquidation that a given bank is entitled to gives us the following update
for its equity:

∀i ∈ J0, nK, Êit = Rit−1 + r
(
L̂it − D̂i

t

)
+

∑
j∈Dt−1

Ψij
t−1π

j
t−1 + L̂it + P̂ it − D̂i

t.

Developing, we can show that there are three possible sources of losses of equity. Let us
consider i given:

Êit = Rit−1 + r
(
L̂it − D̂i

t

)
+

∑
j∈Dt−1

Ψij
t−1π

j
t−1 + Lit−1 + L̂it − Lit−1 + P̂ it − D̂i

t.

Using the fact that D̂i
t = Di

t−1, we can get the following formula:

Êit = Eit−1 + r
(
L̂it −Di

t−1

)
︸ ︷︷ ︸
↓ net loans revenues

+
∑

j∈Dt−1

Ψij
t−1π

j
t−1 + L̂it − Lit−1︸ ︷︷ ︸

defaults

+Qit−1ωt︸ ︷︷ ︸
portfolio

.

5 Initialization given a loans structure

We describe in this section how we go about initializing the balance sheets quantities
once a weighted and directed graph is given. Obviously this graph entirely characterizes
the matrix of loans L, and as a consequence the variables Li0 and Di

0 for all the banks are
fixed. This gives us two degrees of freedom:

• The choice of equities which implicitly determines the amount of liquid assets
(
P i0 +Ri0

)
.

• The choice of the division of liquid assets between portfolio and reserves.

18



5.1 Constraints

Although we need to initialize such that the following constraints are satisfied:

• The condition (1) :
Qi0µ ≥ r

(
Di

0 − Li0
)
.

• The reserve rule (2):
Ri0 ≥ max

(
0, r

(
Di

0 − Li0
))
.

• A liquid asset postivity rule: Equity must be chosen such that the liquid assets(
P i0 +Ri0

)
are positive, which is equivalent to:

Ei0 ≥ Li0 −Di
0

• A leverage objective:
Li0
Ei0
≤ βiλ∗.

where λ∗ is a regulatory leverage threshold and β is a behavior parameter for the
banks. Since Li0 = Ei0 +Di

0, the leverage objective can be rewritten as:

1 +
Di

0

Ei0
≤ βiλ∗.

Since Di0
Ei0
≥ 0, we must have:

βiλ∗ ≥ 1⇔ βi ∈
[

1

λ∗
, 1

]
.

This interval being valid since λ∗ ≥ 1.

The leverage condition can be reformulated as:

Ei0 ≥
Di

0

λ∗βi − 1
.

Let us define the leverage lower bound on equity by:

Ei∗0 =
Di

0

λ∗βi − 1
.
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5.1.1 Rewriting of the first constraint in terms of portfolio

Let us first focus on the first condition since it needs to be transformed to be expressed
as a condition on P i0. Firstly, as stated earlier, the relative quantities invested in each asset
are given for each bank.

Let us denote by qi ∈ Rm the vector of the relative fractions invested in the risky assets
for bank i. As a consequence, we have:

Qi0 = piqi

Let us also introduce the portfolio size variable pi ∈ R+. Using this variable, we can
characterize P i0 using the following equality:

P i0 = piqiTX0.

We normalize the initial values of all assets, meaning that

X0 = x01Rm .

As a consequence,

P i0 = piqiTx01Rm = x0p
i

Now, we introduce the variable:
µ̃i = qiTµ.

We have:
piµ̃i = Qi0µ

and thus:
P i0µ̃

i = x0Q
i
0µ

which implies:

P i0
µ̃i

x0
= Qi0µ.

We can as a consequence rewrite the condition (1) in terms of portfolio as:

P i0
µ̃i

x0
≥ r

(
Di

0 − Li0
)
.
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5.2 Choosing equities

We now want to choose equities such large enough such that the constraints can be
satisfied.

Conditions (1) and (2) can be written respectively as:

P i0 ≥
x0
µ̃i
r
(
Di

0 − Li0
)

Ri0 ≥ r
(
Di

0 − Li0
)
.

Summing the two, we get:

P i0 +Ri0 ≥ r
(
Di

0 − Li0
)(x0

µ̃i
+ 1

)
.

Adding Li0 and subtracting Di
0 on both sides we get:

P i0 +Ri0 + Li0 −Di
0 ≥ r

(
Di

0 − Li0
)(x0

µ̃i
+ 1

)
+ Li0 −Di

0

which is equivalent to:

Ei0 ≥
(
Di

0 − Li0
)(

r
x0
µ̃i

+ r − 1

)
.

Let us define then the quantity:

Ẽi0 =
(
Di

0 − Li0
)(

r
x0
µ̃i

+ r − 1

)
.

We must then choose the initial equity such that it implies enough liquid asset via the
above condition and such that it also respects the leverage objective. To finish with, the
implied sum of liquid assets must be positive. This can be stated synthetically using the
following inequality:

Ei0 ≥ max
(
Ẽi0, E

i∗
0 , L

i
0 −Di

0

)
.

5.3 Defining portfolio and reserves

Once the equity has been chosen, the sum P i0+Ri0 is implicitly also chosen since P i0+Ri0 =
Ei0 − Li0 +Di

0

We can then choose P i0 and Ri0 solving the following optimization problem:

maxP i0
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s.t.
P i0≤αiAit

Ri0≥r(Di0−Li0)
P i0+R

i
0=E

i
0−Li0+Di0

P i0≥
x0
µ̃i
r(Di0−Li0)

In order to avoid non feasibility, we must ensure when choosing αi that:

αiAi0 ≥
x0
µ̃i
r
(
Di

0 − Li0
)
.

Which is equivalent to:

αi ≥
x0r

(
Di

0 − Li0
)

Ai0µ̃i
.

If αi is chosen this way, we can apply the same resolution as in the financial choice
problem. We have chosen the equity such that it is large enough to satisfy both conditions
((1) and (2))and we maximize the value of the portfolio thus the choice of αi described
above alone ensures that the above problem and the financial choice problem in t = 0 are
equivalent :

maxP i0

s.t.
P i0 ≤ αiAit

Ri0 ≥ r
(
Di

0 − Li0
)

P i0 +Ri0 = Ei0 − Li0 +Di
0.

Only the equality constraint is different. Taking this into account yields the solution:

P i0 = min
(
Ei0 − Li0 +Di

0 − r
(
Di

0 − Li0
)
, αiAi0

)
.

Factorizing by (Di
0 − Li0):

P i0 = min
(
Ei0 + (1− r)

(
Di

0 − Li0
)
, αiAi0

)
.

We deduce the reserves directly from there:

Ri0 = Ei0 − Li0 +Di
0 − P i0

Since :

pi =
P i0
x0
,

and :
Qi0 = piqi,
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We can easily deduce the initial quantities:

Qi0 =
P i0
x0
qi.

6 Simulations

We study here banks network in which we initialize the banks’ balance sheets such that
they are as similar as possible — the balance sheets follow the same distribution. As a
consequence, we do not wish to study balance sheet heterogeneity effects for this first set
of simulations.

We are going to focus on three indicators for now:

• Cumulative number of defaults. For a given period t this corresponds to the number
of banks that have defaulted up to t.

• Fraction of the initial value of the network lost because of defaults up to time t. The
initial value of the network corresponds to the sum of the assets of all banks in the
network. The value lost because of defaults is the sum of the differences between the
losses from defaulting loans minus the proceedings of liquidation. Thus the fraction
of the initial value lost because of defaults up to time t is the the sum of the values
lost because of defaults up to time t divided by the initial value.

• The probability that 25% of the network has already defaulted at a given period.

6.1 Methodology

6.1.1 Erdős-Réyni graphs

We will carry out our study using the simplest form of random graphs: Erdős-Réyni
graphs [?]. As a reminder, each pair of nodes is linked with a probability pER, all those
edges draws being independent. Thus the connectivity of the graph is controlled by this
parameter only. Once such graph is drawn, we know who is connected to who.

We now determine the directions of the previously drawn links. We arbitrarily fix a
base direction for the edges (the node in the edge which have the lower index in the nodes
pair is put first). We then draw a sign {−1,+1} according to a Bernoulli of parameter pS

for each edge. If the sign is −1 the first node of the edge owes money to the second and
equivalently the second nodes lent money to the first. We will stick to pS = 0.5 for now.

For simplicity’s sake, the weights on the edges are all the same, we call this nominal
value l. Although in order to keep the balance sheets comparable for different sets of pER

parameters, we must apply a normalization to l. If we do not, a graph with a high pER

will result mechanically in bigger balance-sheets. Since the mean of the number of edges of
Erdős-Réyni graphs of parameter pER is (n− 1) pER and since we only wish to change the
parameter pER, simply dividing l by pER is a natural normalization.
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6.1.2 Random draws and averaging

As a consequence, we have two sources of randomness in this economy for each simula-
tion run.

1. The first—which we will call initial conditions randomness—comes from the initial-
ization of the graph and the balance sheets, it is explained in the previous subsection
(6.1.1)

2. The second—which we will call sampled prices randomness—comes from the draw of
a price trajectory according to a discrete additive Gaussian random walk (2.2.1).

We will present several types of results. At first, we will draw only one price trajectory and
average over several initial conditions draws to get an idea of the reactions brought about
by prices events (big drops in risky assets’ values or risky assets defaults). Then in order to
obtain more robust results, we will average over pairs of initial conditions draws and prices
trajectories draws, we call such pairs full draws.

6.1.3 Parameters and context

We keep the parameters simple for our first set of simulations. We work with n = 100
banks, T = 1000 periods, and m = 2 risky assets with each bank investing equally in those
assets—maximum portfolio diversification.

We set the mean and standard deviation parameters for both risky assets to be µ = 0.01
and σ = 0.3—except in some of the prices scenarios for subsection 6.2 where we change
those parameter so as to obtain some stereotypical scenarios. The annual interest rate is
set to rannual = 0.05, we take thus the daily compounded version for the daily interest rate:
r = (1 + rannual)

1
365 .

We fix the non normalized loans nominal value to 1000, which means that for instance
in an Erdős-Réyni graph with pER = 0.1, the face value of all loans will be 1000

0.1 = 10000.
We set the α comportment parameter to be the same for all banks with α = 0.25 meaning

that if possible, banks will chose their portfolios and reserves such that the portfolio amounts
to a quarter of their assets.

The amount of deposits is set at Ē = 5000 for every bank meaning that a bank which
equity goes under 5000 declares bankruptcy.

We specify the price impact function as ξt = 0.2vt . So as to give an idea to the reader,
the fire sale function is plotted in the appendix in Figure 10

We will test several values for the regulatory leverage λ∗ in what follows. Although,
in this setting we do not enforce leverage control at all periods—banks which leverage is
above λ∗ are thus not forced to declare bankruptcy—we thus use the definition 11 of a
defaulting bank rather than the definition 12. In other words, for now we only use λ∗ as a
control parameter for the initial balance sheets, meaning that at t = 0 all banks must have
a leverage inferior to λ∗. The procedure for such initialization is described in detail in 5.
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We set the parameter β = 1 for all banks which implies that they are all exactly at the
leverage objective upon initialization.

Remark: this choice of β would not be smart if we were to enforce leverage control at all
periods, since all the banks that would encounter the slightest loss in the first period would
break the leverage threshold and be forced to declare bankruptcy.

6.2 The impact of asset price dynamics.

In this subsection we study the reaction of Erdős-Réyni graphs with different pER to a
given price scenario. We choose three scenarios — one with an asset decreasing slowly by
steadily and the other remaining around its initial price, one catastrophic scenario in which
one of the risky assets quickly touches zero and one ideal scenario in which both assets’
price increases. We set the leverage to λ∗ = 5 and we average the cumulative defaults over
1000 initial condition draws.

6.2.1 A slowly decreasing price scenario

0

10

20

30

40

Cu
m

ul
at

iv
e 

de
fa

ul
ts

Internal settlement
=5; p=1.0
=5; p=0.6
=5; p=0.3
=5; p=0.1
=5; p=0.05
=5; p=0.01

0

25

50

75

Cu
m

ul
at

iv
e 

de
fa

ul
ts

Liquidator
=5; p=1.0
=5; p=0.6
=5; p=0.3
=5; p=0.1
=5; p=0.05
=5; p=0.01

0 200 400 600 800 1000
Period

0

5

10

Pr
ice

Price scenario

Figure 1: Averaged over 1000 initial conditions

Looking at Figure 1 we observe that for both procedure of liquidation, the least con-
nected graphs — pER = 0.01, pER = 0.05 and pER = 0.1—undergo defaults sooner than
the other more connected graphs — pER = 0.3, pER = 0.6 and pER = 1. However the
increase in defaults is consequently less abrupt for the least connected graph whereas the
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first wave of defaults hits the more connected graphs suddenly pushing half of the network
into default in just a few periods. One can draw a parallel here with the robust yet fragile
property of a connected financial network introduced by [?]: a densely connected financial
network is more resilient to small shock, but conditionally on a shock hitting hard enough
to bring about defaults, the event is very likely to be non-local — a systemic crisis. On the
other hand the less connected graphs seems more sensitive to small shocks but lack never-
theless the connectivity to be subject — at least for very small connectivity parameters —
to abrupt systemic events.

Apart from that, the two liquidation procedures seem to create very different outcomes.
With the internal settlement procedure of liquidation, the graph for which the highest
number of default is reached is the least connected one — pER = 0.01. It reaches a stable
state where approximately 40% of the banks in the network have collapsed. The other
more connected graphs reach a final state with approximately 30% of the bank having
collapsed. Now studying the procedure with the liquidator, we seem to reach for each
graph connectivity parameters, levels of defaults that are significantly higher than with
the internal settlement procedure since between half and the entirety of the network have
defaulted after 1000 periods. The effect of connectivity also seems different between the
two procedures since in the internal settlement case, the graph reaching the highest number
of defaults are the least connected ones whereas in the case with the liquidator, more
connectivity seems to mean more defaults.

However defaults are not a fatality, if both assets’ price increase, we do not observe any
defaults which is reassuring for the validity of our model.

6.2.2 Extreme scenarios

Figure 2 shows one of the most terrible cases as one of the assets prices reaches its zero
limit quite rapidly which brings about fierce and fast contagion.

However defaults are not a fatality: if both assets’ prices increase, we do not observe
any defaults which is reassuring for the validity of our model (see Figure 3).
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Figure 2: Averaged over 1000 initial conditions
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Figure 3: Averaged over 1000 initial conditions
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6.3 Impact of connectedness (Fixed λ∗)

We will now average over 4000 full draws (initial conditions and prices) so as to obtain
more statistically robust results.

6.3.1 Rewiring

Looking at Figure 4, the number of defaults seems to increase in the parameter pER from
0.01 to 0.05 where it reaches a maximum and then it decreases with pER from 0.05 to 1.0.
One possible interpretation is that up to a critical point (pER = 0.05) more connectivity
means more opportunities for contagion and beyond that critical point more connectivity
means a diversification of counterparts reducing potential contagion. To finish with, we are
still at a “reasonable” average number of defaults, since roughly one sixth of the network
defaults after 1000 periods when pER is at its critical value. Finally the dynamics of
connected networks is markedly different: some curves cross each other. Over time networks
with an initial low level of connected ness and lower default rates may eventually generate
higher rates.
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Figure 4: Internal settlement case - Averaged over 4000 full draws

If we look at the impact on cumulative value lost because of defaults (Figure 5), we find
it to be very similar to Figure 4. This tells us that measuring contagion in term of fraction
of the initial value lost because of defaults leads us to the same conclusions as measuring
it in absolute number of defaults.
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Figure 5: Internal settlement case - Averaged over 4000 full draws

6.3.2 Liquidator

As opposed to the internal settlement liquidation case, Figure 6 shows that, when the
liquidation procedure involves the liquidator, the ratio of defaults tends to be more larger
for any value of connectedness. There is significantly more defaults using this procedure
of liquidation that the previous one. For example, after 1000 periods for pER = 0.4,
one third of the network has defaulted with the liquidator and 13% with the previous
procedure. This is puzzling but it suggests that the windfall effect of the internal settlement
procedure is beneficial as far as contagion is concerned. Indeed it functions as giving more
capacity to resist contagion to the lucky banks having borrowed to defaulting ones: the dire
consequences of default is concentrated on the lending banks. Some banks are weakened,
some are actually strengthened ; on the whole this acts as a protection device, a variety of
a containement mechanism.

An increase in more connectiveness on the whole means more opportunities for con-
tagion but it is less systematic than in the internal settlement procedure: we see a slight
improvement of pER = 0.6 over pER = 0.4 and of pER = 1.0 over pER = 0.6.

The same remarks can almost directly be applied to Figure 7 — losses because of defaults
increase with pER. We however do not observe the same improvement from pER = 0.4 to
pER = 1.0 looking at the losses. Lastly, we highlight that in absolute value we reach a
maximum of more than 30% of losses in the liquidator case as opposed to 17.5% in the
internal settlement case.
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Figure 6: Liquidator case - Averaged over 4000 full draws
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Figure 7: Liquidator case - Averaged over 4000 full draws
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6.4 Impact of initial prudential regulation (Effect of λ∗)

We keep the same procedure as before — average over 4000 full draws—but we will
now also test several values for λ∗. In order to be able to visualize in 3 dimensions the
joint effect of pER and λ∗, we give ourselves a time horizon of T = 400—in the previous
graphs, it seems that the increase in defaults and losses is slower after period 400 than
after. We then evaluate empirically at each period the probability that 25% of the banks
in the network have already defaulted.

6.4.1 Rewiring
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Figure 8: Internal settlement case - Averaged over 4000 full draws

Looking at Figure 8, we observe the same type of conclusion for the effect of pER as
in 6.3. This non monotonous effect of the connectivity parameter echoes to the findings of
[?] ("Diversification : it gets worse before it gets better") and [?]. As the positive effects
of diversification are less explicit in our model, a deeper inquiry is necessary (maybe using
other parameters so as to disentangle this effect and see if it is a real finding or rather an
artifact). In all cases, such results have a natural interpretation: more connectivity in a
graph implies a higher number of potential hits but also reduces the strength of those hits.
For smaller values of pER, the first effect dominates up to a certain point and then the
second effect dominates.

The effect of λ∗ is less ambiguous and monotone. As one could have anticipated, more
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leverage implies a higher probability of having already lost one fourth of the network at
period 400. Moreover, given pER, this probability seems to be linearly increasing in λ∗.

6.4.2 Liquidator

Looking at Figure 9, we do not observe ambiguous effects of diversification when using
the liquidation with a liquidator procedure, as opposed to Figure 8. Here more diversifica-
tion only means the opportunity for more hits. Regarding leverage though, still comparing
Figures 8 and 9, the effect of λ∗ is similar in both procedures of liquidation.

parameter of ER graph

0.0
0.2

0.4
0.6

0.8
1.0Leverage

2
3

4
5

6
7

8
9

10

P(25%
 defaults) at T=400 0.1

0.2
0.3
0.4
0.5
0.6
0.7

Figure 9: Liquidator - Averaged over 4000 full draws

6.5 Impact of firesale coefficient

As expected the higher the firesale coefficient, the larger the fraction of asset liquidated:
this coefficient is an important factor in the fragility of the financial network.
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Figure 10: Firesale function

6.6 Network deformation

It is worth studying how do the networks and balance sheets quantities in the network
deform typically through time. Here we present preliminary results, acknowledging that
more is to be done on the subject.

The simplest way to measure the deformation of the network through time is the “average
degree”: the average of the sum of in and out degrees for each bank. We use the same
simulations as previously (4000 full draws for each value of the parameters). The result
for the liquidator’s case can be seen in Figure 11. The result is not too surprising and in
coherence with the number of defaults from Figure 6, as connections with defaulting banks
are broken. The degree of connectedness tend to decrease over time, likely as the result
of the disapperance of banks. This is mildly so however: for lowly connected networks
the average degree of connectedness hardly moves. What is surprising though is that the
curves do not cross: if a network is originally more connected than another one, it remains
so despite the different sequence of defaults and the fact that the proportion of defaults
tends to be higher for originally more connected networks.
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Figure 11: Liquidator - Averaged over 4000 full draws

6.7 Impact of contagion on asset distribution.

We also look at the distributions of different balance-sheet quantities of interest. How-
ever, if we want to be able to observe the results graphically, we necessarily need to limit our
study to a single set of parameters

(
pER, λ∗

)
. We arbitrarily chose for our partial analysis

pER = 0.3 and λ∗ = 5.
Let us first look at the average distribution of assets across our 4000 full draws in Figure

12. We observe that the distribution of assets is very piked at first and it then widens
through time. However it does not do so symmetrically since the distribution becomes
skewed thus including banks that are significantly bigger than the others at the end.

We observe the same kind of asymmetric deformation for the distribution of equities,
again in the case of liquidator, in figure 13.

Another interesting quantity to look at is the evolving distribution of the leverage ratio.
Assuming that banks all start out at a fixed regulatory leverage λ∗, this ratio may fluctuate
afterwards freely (no prudential dynamic policy is enforced on leverage). Looking at Figure
14, indeed all the banks start out at λ∗, however it seems that the distribution converges
to a distribution centered on λ = 3. If we had time, it would have been interesting to test
more seriously if a leverage distribution equilibrium existed and if so, if it were independent
of the initial value of λ∗.
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Figure 14: Liquidator - Averaged over 4000 full draws

7 Conclusion

We study in this paper the dynamics of a bank network with a focus on contagion,
deformation and convergence of the graph’s final structure. We have for now studied in-
dicators mostly regarding banks such as cumulative number of defaults, value lost because
of defaults or probability of a given proportion of the network having defaulted at a given
period. However we also computed graph indicators such as average degrees, and we will
also include examples of network deformations.

Even though we are still at an exploration stage, the simulations yield promising results.
The two schemes for liquidation imply two very distinct reactions to the parameter of graph
connectivity. When the internal settlement procedure is used, even though increasing the
connectivity at first induces more contagion, after a critical connectivity level, the network
benefits from diversification. When the liquidator procedure is used however, we do not
observe any benefit from diversification as the connectivity of the graph only increases its
vulnerability. Moreover, both in absolute number of defaulted banks and in fraction of initial
value lost because of defaults, the procedure with internal settlements looks better than the
one with the liquidator. In all cases, connectivity matters a great deal. Now focusing on
leverage, as opposed to connectivity, its impact is similar for both liquidation procedures,
and very significant. As one could expect, more leverage implies a more fragile network
more prone to contagion, this fragility seemingly increasing linearly with the leverage.
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However, now that we have built a dynamic model of bank network, we wish to test
several dynamic control policies and assess their performances. This raises mainly two types
of questions: when and where should a regulator intervene ? How should it intervene ? To
when and where, we could answer: Using centrality measures ? Using leverage ? Using
priority planning [?]?... To how we could answer: By forcing liquidation of banked deemed
too risky ? By absorbing a part of the balance sheet of the bank in difficulty ? By directly
injecting equity ?...

Focusing on the effects of heterogeneity in the balance sheets is our second axis of
improvements, in particular, in doing so we wish to investigate the "too big to fail" pos-
sibility—are there banks that are so big that their default necessary brings about more
defaults that the network can handle ? We also wish to study the key players in the graph
structure to see if some are "too connected to fail" or if some are hubs [?] more likely to be
vectors of defaults propagation.

As a third axis of improvement, we still need to tune or/and change some parameters and
characteristics of the model so as to make it more realistic. Firstly, our characterization of
price impact is for instance too simple since it remains local in time. A major improvement
to our model would be to incorporate a simple market mechanism modelling offer and
demand for the risky assets which would enable us to introduce a long term impact of fire
sale on the prices of risky assets. Secondly the banks are very passive actors. We could for
instance enrich their behavior by introducing a richer financial choice optimization problem.
Thirdly, the interest rates are constant across time and the same for all banks. Adding a
dynamic interest individual rate that would take into account the level of risk of each bank
would certainly be more realistic. Last but not least, giving the possibility to banks to
change their loans partners would be a major add-in.

To finish with, our initialization procedure is not realistic. We find hard to believe—and
probably so does the reader—that a real bank network can be likened to an Erdős-Réyni
graph. There are bound to be enormous heterogeneity in sizes of balance sheets, in con-
nections intensity... As a consequence, having access to real data would highly improve our
credibility. We could thus use a real bank network as initial configuration and potentially
find results more likely to fit the complexity of the matter we are trying to model.
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